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The Two-State Random Walk 
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We develop asymptotic results for the two-state random walk, which can 
be regarded as a generalization of the continuous-time random walk. The 
two-state random walk is one in which a particle can be in one of two states 
for random periods of time, each of the states having different spatial 
transition probabilities. When the sojourn times in each of the states and 
the second moments of transition probabilities are finite, the state proba- 
bilities have an asymptotic Gaussian form. Several known asymptotic results 
are reproduced, such as the Gaussian form for the probability density of 
position in continuous-time random walks, the time spent in one of these 
states, and the diffusion constant of a two-state diffusing particle. 

KEY W O R D S :  Random walks; Markov processes; Markov renewal 
processes; asymptotic distributions. 

The theory of  the cont inuous- t ime r andom walk (CTRW),  first discussed 

by Montro l l  and Weiss, (1~ has been applied to calculate the t ransport  proper- 

ties of disordered solids. (2-4~ The C T R W  can be formulated as a two-state 

process, in which a r andom walker is either at rest or in motion.  A single 
sojourn in the rest state takes a r a n d o m  a m o u n t  of  time, at the conclusion 

of  which the r a n d o m  walker moves to another  position, with infinite speed 
(i.e., the t ransi t ion t ime is zero). In  this paper we point  out that an appro- 
priate generalization of the C T R W  is a two-state r a n d o m  walk with different 

parameters  appropriate  to the two states. The diffusion analog to such r andom 
walks has been discussed by Bak (5~ as a model for certain types of electro- 

phoresis experiments, by Meiboom (5~ in the context of N M R  measurements,  

by Fr i edman  and Ben-Naim (7~ in the calculat ion of t ranspor t  coefficients in 
electrolyte solutions, and by Giddings and Eyring and others (8-1~ as a model  
for chromatographic  processes. More  recently the two-state r a n d o m  walk 

has been used by Lindenberg  and  Cukier (!s~ to study molecular  rota t ional  
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motion. Other recent applications of the ideas of the two-state walk have 
been made by Bedeaux et  al. (~6~ and Kenkre et  al.  (1~ The mathematical 
theory of the two-state process is summarized by Cox (~8~ based on the work 
of Smith. (~9'2~ In the present paper we apply Smith's results to calculate 
asymptotic properties of two-state random walks. 

Let the probability density for a single sojourn in state i be ~(t) ,  i = 1, 2, 
and let the transition densities be denoted by p~(r, t), i.e., p~(r, t) d"r is the 
probability that a random walker in state i makes a (vector) transition to a 
volume element d"r centered at r in time. Our present development is for 
continuous random walks; the specialization to lattice random walks will 
be summarized later. The probability density for a displacement r during a 
single complete sojourn in state i of  duration t will be denoted by f~(r, t) 
and is given by 

f i (r ,  t)  = p~(r, t)~(t) (1) 

The CTRW discussed by earlier authors is subsumed under our more 
generalized model by making the particular choice 

A(r,  t) = a(r) r A(r,  t) = p(r) ~(t) (2) 

where p(r) is the single-step transition probability density and ~b(t) is the 
waiting time density. 

We present an exact expression for the Laplace-Fourier transform for 
the probability density of the position of the random walker at time t. For 
this expression it will be possible to derive asymptotic results for the moments, 
which can then be used in an application of the central limit theorem to 
specify the complete asymptotic distribution. Let a~ be the probability of 
being in state i at t = 0. Let ~,~(t) be the probability density for the duration 
of the sojourn time of the state that starts at t = 0 if that state is i. This 
definition is necessary since if one observes a random walk that has been 
going on for some time in the past and the observation takes place at t = 0, 
then this time does not necessarily coincide with the beginning of a sojourn. 
It is known (18) that y~(t) is given by 

i /i ~,~(t) = ~b,(z) dr ~b,(r) dr (3) 

Similarly the conditional densities p~(r, t) must be replaced by different ones 
for the first sojourn, but properties of these new functions will not influence 
asymptotic properties, so we simply denote the new conditional densities 
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by q~(r, t) without specifying them more exactly. For convenience we also 
define the functions 

F~(r, t) = p,(r, t)f t  ~ 

Q,(r, t) = q~(r, t )f t  ~ ~,,(~) d~ 

(4) 

These are the conditional densities for the transition in space in time t and 
state i, conditional on the sojourn time being longer than t. 

Let P(r, t) be the probability density for position at time t. We can 
decompose this as P = P1 + P2, where P,(r, t) d"r is the probability that the 
random walker is in volume dnr centered at r at time t in state i. Let wi(r, t) dt 
be the probability that a sojourn in state i ends with the random walker in 
the volume dnr during the time interval (% r + dr). Then P1, for example, 
satisfies the integral equation 

f0 f: Pl(r, t) = a~ Ql(r, t) + dr w2(p, r)F,(r - p, t - r) d"p (5) 
0O 

and P2(r, t) satisfies an analogous equation. These equations contain the 
~o,(r, t). We can write similar equations for the a,,(r, t). For example, ~ol 
satisfies 

Jo j; o~(1., t)  = ~ k l ( r ,  t)  + d~- ~o~(p, - ) A ( r  - P, t - ~-) d"o (6) 
c~ 

where ki(r, t) is q~(r, t)7~(t ). A similar equation is satisfied by c%(r, t). The 
form of Eqs. (5) and (6) suggests the use of the Laplace-Fourier transform. 
Let an arbitrary function h(r, t) have a Laplace-Fourier transform 

f: h*(to, s) = [exp(-s t ) ]  dt - . .  h(r, t) exp(ito.r) d"r (7) 

Then Eqs. (5) and (6), when transformed, become algebraic equations, 
from which it is possible to find P*(o~, s) in the form 

1 
P*(to, s) = a~Q~* + ~2Q2" + 1 -f~*f=* [c~kl*(F2* + r~*f2*) 

+ a2kg.*(Fl* + F2*f~*)] (8) 

One can verify, after some algebra, that P*(0, s) = 1/s. 
The expression in Eq. (8) is exact, involving no approximations. When the 

moments of the ~b,(t) and p,(r, t) and q~(r, t) are finite, then P(r, t) must be 
asymptotically Gaussian in space for sufficiently large t, by an argument 
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making use of the central limit theorem. The asymptotic form of  the moments 
can be calculated from Eq. (8) by differentiation and the application of appro- 
priate Tauberian arguments. 

Since P(r, t) is asymptotically Gaussian, we need only give the first 
and second moments and covariance functions to specify the form com- 
pletely. For simplicity we first consider the first two moments corresponding 
to a random walk in one spatial dimension. In order to express the results 
we need some notation. The moments of a function ;~(r, t) with respect to 
f~(r, t) is defined in the usual manner and will be denoted by (t4), Notice 
that it follows from the definition in Eq. (1) that if I is a function only of t, 
then 

jo ()~(t))~ = A(t)~b~(t) dt (9) 

since the space integral is just equal to 1. We define the quantities 

( t )  = ( t ) l  + ( t ) 2 ,  ( x )  = ( x ) l  + ( x ) 2  

~.~ = <x~) ,  - (x)?,  ~2 = ~,1 + ~.~ 
= ~2 2 (10) ~,~ = ( t %  - ( t ) ? ,  ~.~ ~.1 + ~.~ 

2 

PXT = ~ ((xt)~ - (x)~(t)~) 
5 = 1  

The first two moments are, in the limit of  t / ( t )  -+ o% 

(x ( t ) )  ~ ( x ) ( t / ( t ) )  

[ [ ( x ) ~ 2 - 2 ( x )  ] t (11) as(t) = (x2(t)) -- (X( t ) )  2 ~ ax 2 "t- c~r 2 \ ( t )  l - ~  PXT " ~  

It is interesting to note that in addition to the pure spatial and temporal 
moments, the mixed time-space correlation pxr appears in the expression 
for the asymptotic variance. 

As a first example of the application of this theory we calculate the mean 
and variance of the CTRW for which they(x ,  t) are specified in Eq. (2). For 
this model one can easily find that 

( x ) l  = (x2)~ = ( t )2  = (t2)2 = 0 

(x)2 = (x) ,  ( t ) l  = ( t ) ,  (x2)2 - (x)2 2 = ax 2 (12) 

(t2)~ - ( t ) l  2 = ar z, pxr,1 = pzr,2 = 0 

so that Eq. (11) implies that 

( x ( t ) )  ~ ( x ) ( t / ( t ) )  (13) 

a2(0 ~ [~ 2 + ar2( (x) / ( t ) )2] ( t / ( t ) )  
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which are just the results given by Schlesinger (21) in a slightly different nota- 
tion. A second application of the general formulas in Eq. (11) is to the 
calculation of statistical properties of the time spent in one of the two states. 
For this problem the space variable is replaced by the time spent in state 1. 
We can take this into account by setting 

f~(x, t) = 8 ( x -  t)~l(t) ,  f2(x, t) -- 3(x)~b2(t) (14) 

Both the spatial and temporal moments corresponding to these transition 
densities can be expressed in terms of the moments of ~b~(t) and ~b2(t). A 
calculation of the relevant quantities leads to the asymptotic expressions 

( x ( t ) )  ~ ( t ) l ( t / ( t ) )  
05) 

o2(t) ,,~ [(a12(t)2 ~ + ~22(t)~2)/(t)3]t 

with a Gaussian density. These results were first given by Takacs. (22) A final 
application of the general results is to the calculation of the distribution 
of displacement of a two-state Brownian particle in a constant field. This is 
a slight generalization of Giddings and Eyring's model for a molecule in a 
chromatographic column. (8) They assumed that one phase was stationary, i.e., 
the molecule was temporarily trapped, and the second was a mobile phase, 
in which the molecule moves at constant speed for a random time. We will 
assume that the transition densities are 

1 [ (x -- ~t) 2] 
f ( x ,  t) = (4~D,t)l/2 e x p _ -  4D4 j ~b,(t), i = 1, 2 (16) 

which are characterized by two (constant) average speeds v, and two diffusion 
constants D,. For this model the general results in Eq. (11) imply in particular 
that 

( x ( t ) )  ~ ~t 
(17) 

~ ( t )  ~ 2 O t  + [ ~ ( v l  - ~)~ + ~ ( ~  - ~)~](t /~t))  

in which V a n d / )  are defined by 

= (v~(t)~ + v2( t )2) / ( t ) ,  D = (D~(t)~ + D2s  (18) 

and the e 2  are variances with respect to the ~b~(t). Thus, one can define an 
effective diffusion constant by 

Z)o~, = ~ + ( 1 / 2 ) [ ~ ( ~ 1  - v)~ + ~ ( v ~  - v)~] /<t)  (19) 

There are two contributions to Doff; the first is a weighted average of the 
two diffusion constants. The second can occur even in the absence of diffusion 
in either of  the two phases, and is due to the time in each phase being random 
and to a difference in convective speeds. Notice that although we have chosen 
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the p~(x, t) to be Gaussian to obtain the results in Eqs. (17) and (19), all 
that is really required is that the moments be of the form 

f ~ xp~(x, t) dx = v~t, 
eo  

f ~ x2p~(x, t) dx = v~2t 2 + 2D~t 
oo 

(20) 

It is simple (o generalize the preceding analysis to the multidimensional 
case starting from Eq. (11). When the first moments of the ~b~(t) are finite, 
a Tauberian argument allows us to derive the following expressions for the 
asymptotic values of the first two moments and covariances: 

( x s ( t ) }  ~ ( x } j ( t / ( t } j )  

( x j ( t ) x z ( t ) }  - ( x j ( t ) } ( x z ( t ) }  

( x j ) ( x ~ )  
~ ( x j x y  - ( x j } ( x l }  + zT 2 ( t ) 2  

(21) 
l '  (~)((xj)px,T + (x,)px,T) (t) 

generalizing Eq. (11). Both of Eqs. (11) and (21) are valid under the assump- 
tions that the average sojourn times are finite as well as the indicated spatial 
averages. 

Analogs of these results exist for lattice random walks both in discrete 
and continuous time. Let us consider the former case. Let ps(r; n) be the 
probability of a displacement r in n steps in state j,  and let ~b~(n) be the prob- 
ability that a given sojourn in state i will consist of  exactly n steps. Then the 
joint probability that a sojourn in state j will be of duration n, leading to a 
displacement r, is f~.(r; n) = pi(r; n)~b~(n), analogous to Eq. (1). We may also 
define the analogs to Eq. (4) as 

F~(r; n) = pj(r; n) ~ ~bj(m), Gj(r; n) = gj(r; n) ~ 7j{m) (22) 

It will prove convenient later to define single-step transition probabilities 
qy(r) and hi(r) corresponding to the n-step probabilities py(r; n) and gy(r; n), 
respectively, together with the generating functions 

q,*(O) = ~ . - .  ~ q3-(r) exp(ir. O) 
7' 1 Tn, 

(23) 
hi*(0) = ~ - . -  ~ hj(r) exp(ir-0) 

r l  rn 

It is well known that these allow us to express the p~(r; n) as 

1 r e "  
py(r; m ) =  7-4z~_~l-..[[q,*(O)]mexp(-ir.O)d~O (24) 
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with a similar expression for the gj(r; n). Rather than working with Fourier- 
Laplace transforms as we have earlier, we use the joint generating functions 

a*(O;z) = ~ . . - ~  ~ a(r;m)zmexp(ir.O) (25) 
T I =  --o0 ~r m = O  

The joint generating function is then given by P*(0; z), which is expressed 
in terms of the component functions as in Eq. (8) except that the continuous 
transforms there are replaced by generating functions. In particular, if we 
know the generating function corresponding to the ~b~(n), i.e., 

Wj(z) = ~ ~j(m)z m (26) 
m = 0  

thenf~*(0; z) is just 

fj*(O; z) = Wj(zqj* (0)) (27) 

This identity is derived by combining Eqs. (23)-(26). 
The asymptotic results in Eq. (11) are valid also for lattice random walks, 

as can be verified by an analysis similar to that given for the continuous case. 
However, we can also derive results of specific interest in the theory of lattice 
random walks. Any asymptotic properties of the random walk will depend 
only on properties of the integral 

1 ~'~ ((zlkl*(r2* + •2"F1")+ c~2k2*(Fl* + ~Ft*r2*) 
Q(r; z) = ~ - ~ _  "_'; - 1 - Vl*LFe * 

x exp(-- iO-r) d"O (28) 

where 

r j *  = 1 - z q # ( O ) % ( z q j * ( O ) )  

1 - zqp(O) (29) 

= kj* ~ gj(r; m)73(m)z m exp(/r. 0) 
lg m = 0  

Equation (28) is the discrete analog of the inverse to Eq. (8), except for the 
first two terms, which do not contribute to any asymptotic properties when 
the 7~(n) have finite first moments. The probability that a random walk 
starting from the origin will eventually return to the origin is equal to one 
when 

lim Q*(0, z) = oo (30) 

and is less than one otherwise. The integrand in Eq. (28) is or is not integ- 
table depending on the dimension d and the singularity at 0 = 0, z = 1. 
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We make the assumptions that the qj(r) are symmetric about r = 0 since 
otherwise the question of return to the origin is not an interesting one. We 
also assume that the moments a,2(j)  = ~r l  "'" ~r,~ r,2qj(r) are finite and that 
the two mean sojourn times (m) l  and (m)2 are finite. When these two con- 
ditions are fulfilled we can expand tF**(u) around u = 1 as 

and qj*(O) as 

tF~*(u) = 1 - (m),(1 - u) + O[(1 - u)] (31) 

qj*(0) = 1 - �89 ~ az2(j)O, 2 + O(1012) (32) 
l 

Hence an expansion of the denominator in Eq. (28) yields 

1 - ~1"W'2" ~ (m)( l  - z + �89 ~ az2--Oz 2) 
/ = 1  

where 

(33) 

(m)  = (m) l  + (m)2, az 2 = [(m)laz2(1) + ( m ) 2 e z 2 ( 2 ) ] / ( m )  (34) 

But the expression in Eq. (33) is of  the same form as that for the single-state 
random walk, so that for the two-state random walk return to the origin is 
certain in one and two dimensions, and occurs with some probability 
less than one in three or more dimensions. It  also follows that for this case 
the dependence of such quantities as the average number of  points visited and 
the average number of  times a given lattice point is visited in an m-step walk 
is the same as for a single,state random walk, except that the quantity a~ 2 
that appears in formulas for these quantities in the one-state random walk 
is to be replaced by cr 2 as defined in Eq. (34). 

Two generalizations of this work suggest themselves. The first, a rela- 
tively simple one that leads to a complicated algebraic development, allows 
for the possibility of n i> 3 states. This generalization can be set up in terms 
of Markov renewal processes c23~ in which one describes the transitions 
between states by a Markov chain. The two-state problem allows only the 
transition matrix 

(010) 
but the formalism to allow for more general transition matrices is easily 
developed. A second generalization is one in which the sojourn time densities 
have infinite first moments so that the asymptotic results given in Eq. (11) 
are not valid. 
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